题目详情
当前位置:首页 > 职业培训考试
题目详情:
发布时间:2023-10-21 11:42:19

[简答题]设A为n阶非零矩阵,且存在自然数k,使得A k =0.证明:A不可以对角化.

更多"设A为n阶非零矩阵,且存在自然数k,使得A k =0.证明:A不可"的相关试题:

[简答题]

设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明|A|≠0.


[简答题]设A是n阶矩阵,证明:
r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβT
[简答题](Ⅰ) 设A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明λ=-1必是矩阵A与B的特征值;
(Ⅱ) 若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明向量组α,β线性无关.
[单项选择]设A、B都是n阶非零矩阵,且AB=0,则A和B的秩()。
A. 必有一个等于0
B. 都小于n
C. 一个小于n,一个等于n
D. 都等于n
[简答题]设A,B均为n阶非零矩阵,且满足A2+A=0,B2+B=0,证明:
-1是A,B的特征值;
[简答题]设A,B均为n阶非零矩阵,且满足A2+A=0,B2+B=0,证明:
若AB=BA=0,ξ1,ξ2分别是A,B的对应于特征值λ=-1的特征向量,则ξ1,ξ2线性无关.
[填空题]设A为n阶非零矩阵,其元素aij全为实数,aij=Aij(Aij为aij的代数余子式),则r(a)=______。
[简答题]若任一n维非零列向量都是n阶矩阵A的特征向量,证明A是数量矩阵(即A=kE,E是n阶单位矩阵).
[简答题]若任一n维非零列向量都是n阶矩阵A的特征向量,证明A是数量矩阵(即A=kE,层是n阶单位矩阵).
[简答题]已知A是n阶非零矩阵,且A中各行元素对应成比例,又α1,α2,…,αt是Ax=0的基础解系,β不是Ax=0的解.证明任一n维向量均可由α1,α2,…,αt,β线性表出.
[简答题]设A是n阶实矩阵,有Aξ=λξ,ATη=μη,其中λ,μ是数,且λ≠μ,ξ,η是n维非零向量,证明η,ξ正交.
[单项选择]设A为n阶实对称矩阵,B为n阶可逆矩阵,Q为n阶正交矩阵,则下列矩阵与A有相同特征值的是
(A) B-1QTAQB. (B) (B-1)TQTAQB-1
(C) BTQTAQB. (D) BQTAQ(BT)-1
[简答题]

设A=E-ξξT,其中E为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置。
证明:(1)A2=A的充要条件是ξTξ=1;
(2)当ξTξ=1时,A是不可逆矩阵.


[单项选择]设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P 一1 AP) T 属于特征值λ的特征向量是( )
A. P 一1 α。
B. P T α。
C. Pα。
D. (P 一1 ) T α。
[填空题]设α,β都是n维非零列向量,矩阵A=2E-αβT,其中E是n阶单位矩阵.若A2=A+2E,则αTβ=______.
[简答题]设A是n阶正定矩阵,证明:|E+A|>1.
[简答题]设A是n阶反对称矩阵,
(Ⅰ)证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵;
(Ⅱ)举一个4阶不可逆的反对称矩阵的例子;
(Ⅲ)证明:如果A是A的特征值,那么一A也必是A的特征值.

我来回答:

购买搜题卡查看答案
[会员特权] 开通VIP, 查看 全部题目答案
[会员特权] 享免全部广告特权
推荐91天
¥36.8
¥80元
31天
¥20.8
¥40元
365天
¥88.8
¥188元
请选择支付方式
  • 微信支付
  • 支付宝支付
点击支付即表示同意并接受了《购买须知》
立即支付 系统将自动为您注册账号
请使用微信扫码支付

订单号:

截图扫码使用小程序[完全免费查看答案]
请不要关闭本页面,支付完成后请点击【支付完成】按钮
恭喜您,购买搜题卡成功
重要提示:请拍照或截图保存账号密码!
我要搜题网官网:https://www.woyaosouti.com
我已记住账号密码