更多"设A,B均为n阶非零矩阵,且满足A2+A=0,B2+B=0,证明:若A"的相关试题:
[简答题]设A,B均为n阶非零矩阵,且满足A2+A=0,B2+B=0,证明:
-1是A,B的特征值;
[简答题](1)设A,曰均为n阶非零矩阵,且A2+A=B2+B=0,证明λ=-1必是矩阵A与B的特征值;
(2)若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明向量组α,β线性无关.
[简答题](Ⅰ) 设A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明λ=-1必是矩阵A与B的特征值;
(Ⅱ) 若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明向量组α,β线性无关.
[简答题]设A和B均是n阶非零方阵,且满足A2=A,B2=B,AB=BA=0.证明:
若α是A的属于特征值1的特征向量,则α必是β的属于特征值0的特征向量.
[简答题]设A和B均是n阶非零方阵,且满足A2=A,B2=B,AB=BA=0.证明:
0和1必是A和B的特征值;
[简答题]设B是可逆阵,A和B同阶,且满足A
2
+AB+B
2
=O.证明:A和A+B都是可逆阵,并求A
-1
和(A+B)
-1
.
[单项选择]设A为3阶非零矩阵,且满足a
ij
=A
ij
(i,j=1,2,3),其中A
ij
为a
ij
的代数余子式,则下列结论:
①A是可逆矩阵;②A是对称矩阵;③A是不可逆矩阵;④A是正交矩阵.
其中正确的个数为 ( )
A. 1
B. 2
C. 3
D. 4
[简答题]设A和B均为n阶方阵,且满足A2=A,B2=B,(A+B)2=A+B.证明AB=0.
[简答题]已知A与B均为n阶正定矩阵,证明AB是正定矩阵的充分必要条件是AB=BA.
[简答题]设A,B为n阶矩阵.(1)是否有AB~BA;(2)若A有特征值1,2,…,n,证明:AB~BA.
[简答题]
1.设A,B是n阶矩阵,A有特征值λ=1,2,…,n.证明:AB和BA有相同的特征值,且AB~BA;
[简答题]设A是n阶矩阵,证明:
r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβT;
[简答题]设A是n阶矩阵,证明:
(Ⅰ) r(A)=1的充分必要条件是存在行阶非零列向量α,β,使得A=αβT;
(Ⅱ) r(A)=1且tr(A)≠0,证明A可相似对角化.
[单项选择]设A、B都是n阶非零矩阵,且AB=0,则A和B的秩()。
A. 必有一个等于0
B. 都小于n
C. 一个小于n,一个等于n
D. 都等于n
[简答题]已知A为三阶矩阵,α1,α2为Ax=0的基础解系,又AB=2B,B为三阶非零矩阵.
(Ⅰ)计算行列式|A+E|;
(Ⅱ)求r(A-2E);
(Ⅲ)求矩阵2A+3E的特征值.
[简答题]已知A为三阶矩阵,α1,α2为Ax=0的基础解系,又AB=2B,B为三阶非零矩阵
(Ⅰ)计算行列式|A+E|;
(Ⅱ)求γ(A-2E);
(Ⅲ)求矩阵2A+3E的特征值.
[简答题]设A为n阶非零矩阵,且存在自然数k,使得A
k
=0.证明:A不可以对角化.