题目详情
当前位置:首页 > 职业培训考试
题目详情:
发布时间:2023-12-27 21:04:57

[填空题]A是三阶矩阵,ξ,α,β是三个三维线性无关的列向量,其中Ax=0有解ξ,Ax=β有解α,Ax=α有解β,则A~______.

更多"A是三阶矩阵,ξ,α,β是三个三维线性无关的列向量,其中Ax=0有解ξ"的相关试题:

[填空题]A是三阶矩阵,ξ,α,β是三个三维线性无关的列向量,其中Ax=0有解ξ,Ax=β有解α,Ax=α有解β,则A~______.
[单项选择]已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A 2 α线性无关,而A 3 α=3Aα一2A 2 α,那么矩阵A属于特征值λ=一3的特征向量是( )
A. α。
B. Aα+2α。
C. A 2 α一Aα。
D. A 2 α+2Aα一3α。
[简答题]设A为三阶矩阵,α 123 是线性无关的三维列向量,且满足Aα 1123 ,Aα 2 =2α 23 ,Aα 3 =2α 2 +3α 3 。求矩阵A的特征值;
[填空题]设A是三阶矩阵,α1,α2,α3是三维线性无关列向量,且满足Aα11+2α23,A(α12)=2α123,A(α123)=α12+2α3,则|A|=______.
[单项选择]已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα-2A2α,那么矩阵A属于特征值λ=-3的特征向量是
A. α.
B. Aα+2α.
C. A2α-Aα.
D. A2α+2Aα-3α.
[简答题]

设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足
1123,Aα2=2α23,Aα3=2α2+3α3
(Ⅰ)求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B;
(Ⅱ)求矩阵A的特征值;
(Ⅲ)求可逆矩阵P,使得P-1AP为对角矩阵.


[简答题]设A是各行元素之和均为0的三阶矩阵,α,β是线性无关的三维列向量,并满足Aα=3β,Aβ=3α.
(Ⅰ)证明矩阵A和对角矩阵相似;
(Ⅱ)如α=(0,-1,1)T,β=(1,0,-1)T,求矩阵A;
(Ⅲ)用配方法化二次型xTAx为标准形,并写出所用坐标变换.
[填空题]设A为三阶矩阵,E为三阶单位阵,α,β是两个线性无关的三维列向量,且A的行列式|A|=0,Aα=β,Aβ=α,则行列式|A+3E|的值等于
A.0. B.18. C.6. D.24.
[填空题]若α 1 ,α 2 ,α 3 是三维线性无关的列向量,A是三阶方阵,且Aα 112 ,Aα 223 ,Aα 331 ,则|A|=________.
[简答题]设A是三阶方阵,α 123 是三维线性无关的列向量组,且Aα 123 ,Aα 231 ,Aα 312 。求A的全部特征值;
[简答题]设A为三阶方阵,a为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα-2A2α.
证明:(Ⅰ) 矩阵B=(α,Aα,A4α)可逆;
(Ⅱ) BTB是正定矩阵.
[简答题]设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα-2A2α.
证明:(Ⅰ)矩阵B=(α,Aα,A4α)可逆;
(Ⅱ)BTB是正定矩阵.
[简答题]设A为三阶方阵,α1,α2,α3为三维线性无关列向量组,且有Aα123,Aα231,Aα312
(1)求A的全部特征值;
(2)A是否可对角化
[单项选择]n阶矩阵A具有n个线性无关的特征向量是A与对角矩阵相似的
A. 充分必要条件.
B. 充分而非必要条件.
C. 必要而非充分条件.
D. 既不充分也不必要条件.
[简答题]设A为三阶矩阵,α1,α2,α3是三维线性无关的向量组,且Aα11+3α2,Aα2=5α12,Aα312+4α3
1.求矩阵A的特征值;

我来回答:

购买搜题卡查看答案
[会员特权] 开通VIP, 查看 全部题目答案
[会员特权] 享免全部广告特权
推荐91天
¥36.8
¥80元
31天
¥20.8
¥40元
365天
¥88.8
¥188元
请选择支付方式
  • 微信支付
  • 支付宝支付
点击支付即表示同意并接受了《购买须知》
立即支付 系统将自动为您注册账号
请使用微信扫码支付

订单号:

截图扫码使用小程序[完全免费查看答案]
请不要关闭本页面,支付完成后请点击【支付完成】按钮
恭喜您,购买搜题卡成功
重要提示:请拍照或截图保存账号密码!
我要搜题网官网:https://www.woyaosouti.com
我已记住账号密码