题目详情
当前位置:首页 > 职业培训考试
题目详情:
发布时间:2023-11-06 01:06:06

[简答题]设A为三阶矩阵,α 123 是线性无关的三维列向量,且满足Aα 1123 ,Aα 2 =2α 23 ,Aα 3 =2α 2 +3α 3 。求矩阵A的特征值;

更多"设A为三阶矩阵,α 1 ,α 2 ,α 3 是线性无关的三"的相关试题:

[简答题]设A为三阶矩阵,α 123 是线性无关的三维列向量,且满足Aα 1123 ,Aα 2 =2α 23 ,Aα 3 =2α 2 +3α 3 。求可逆矩阵P使得P 一1 AP=A。
[简答题]

设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足
1123,Aα2=2α23,Aα3=2α2+3α3
(Ⅰ)求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B;
(Ⅱ)求矩阵A的特征值;
(Ⅲ)求可逆矩阵P,使得P-1AP为对角矩阵.


[简答题]已知三阶矩阵A与三维向量x,使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax-2A2x。
计算行列式|A+E|。
[简答题]已知三阶矩阵A与三维向量x,使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax-2A2x。
记P=(x,Ax,A2x)求三阶矩阵B,使得A=PBP-1
[填空题]A是三阶矩阵,ξ,α,β是三个三维线性无关的列向量,其中Ax=0有解ξ,Ax=β有解α,Ax=α有解β,则A~______.
[单项选择]已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A 2 α线性无关,而A 3 α=3Aα一2A 2 α,那么矩阵A属于特征值λ=一3的特征向量是( )
A. α。
B. Aα+2α。
C. A 2 α一Aα。
D. A 2 α+2Aα一3α。
[填空题]设A为三阶矩阵,E为三阶单位阵,α,β是两个线性无关的三维列向量,且A的行列式|A|=0,Aα=β,Aβ=α,则行列式|A+3E|的值等于
A.0. B.18. C.6. D.24.
[填空题]设A是三阶矩阵,α1,α2,α3是三维线性无关列向量,且满足Aα11+2α23,A(α12)=2α123,A(α123)=α12+2α3,则|A|=______.
[单项选择]已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα-2A2α,那么矩阵A属于特征值λ=-3的特征向量是
A. α.
B. Aα+2α.
C. A2α-Aα.
D. A2α+2Aα-3α.
[简答题]设A为三阶矩阵,α1,α2,α3是三维线性无关的向量组,且Aα11+3α2,Aα2=5α12,Aα312+4α3
1.求矩阵A的特征值;
[简答题]设A是各行元素之和均为0的三阶矩阵,α,β是线性无关的三维列向量,并满足Aα=3β,Aβ=3α.
(Ⅰ)证明矩阵A和对角矩阵相似;
(Ⅱ)如α=(0,-1,1)T,β=(1,0,-1)T,求矩阵A;
(Ⅲ)用配方法化二次型xTAx为标准形,并写出所用坐标变换.
[填空题]设A为三阶矩阵,其特征值为λ1=-2,λ23=1,其对应的线性无关的特征向量为α1,α2,α3,令P=(4α1,α23,α2+2α3),则P-1(A*+3E)P为______.
[单项选择]设向量组α1,α2,α3线性无关,则下列向量组中,线性无关的向量组是()。
A. α12,α23,α31
B. α12,α23,α1+2α23
C. α1+2α2,α2+2α3,α31
D. α12,2α23,α1+3α23
[单项选择]n阶矩阵A具有n个线性无关的特征向量是A与对角矩阵相似的
A. 充分必要条件.
B. 充分而非必要条件.
C. 必要而非充分条件.
D. 既不充分也不必要条件.
[单项选择]设向量组α1,α2,α3线性无关,则线性无关的向量组是()。
A. α12,α31,α23
B. α12,2α2+3α3,α13
C. α12,2α23,α123
D. α123,2α12-3α3,8α12-7α3

我来回答:

购买搜题卡查看答案
[会员特权] 开通VIP, 查看 全部题目答案
[会员特权] 享免全部广告特权
推荐91天
¥36.8
¥80元
31天
¥20.8
¥40元
365天
¥88.8
¥188元
请选择支付方式
  • 微信支付
  • 支付宝支付
点击支付即表示同意并接受了《购买须知》
立即支付 系统将自动为您注册账号
请使用微信扫码支付

订单号:

截图扫码使用小程序[完全免费查看答案]
请不要关闭本页面,支付完成后请点击【支付完成】按钮
恭喜您,购买搜题卡成功
重要提示:请拍照或截图保存账号密码!
我要搜题网官网:https://www.woyaosouti.com
我已记住账号密码