更多"A是三阶矩阵,ξ,α,β是三个三维线性无关的列向量,其中Ax=0有解ξ"的相关试题:
[填空题]A是三阶矩阵,ξ,α,β是三个三维线性无关的列向量,其中Ax=0有解ξ,Ax=β有解α,Ax=α有解β,则A~______.
[单项选择]已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A
2
α线性无关,而A
3
α=3Aα一2A
2
α,那么矩阵A属于特征值λ=一3的特征向量是( )
A. α。
B. Aα+2α。
C. A
2
α一Aα。
D. A
2
α+2Aα一3α。
[简答题]设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
。求矩阵A的特征值;
[填空题]设A是三阶矩阵,α1,α2,α3是三维线性无关列向量,且满足Aα1=α1+2α2+α3,A(α1+α2)=2α1+α2+α3,A(α1+α2+α3)=α1+α2+2α3,则|A|=______.
[单项选择]已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα-2A2α,那么矩阵A属于特征值λ=-3的特征向量是
A. α.
B. Aα+2α.
C. A2α-Aα.
D. A2α+2Aα-3α.
[简答题]设A为三阶矩阵,α1,α2,α3为三维线性无关列向量组,且有Aα1=α2+α3,Aα2=α3+α1,Aα3=α1+α2.
求A的全部特征值
[简答题]
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足
Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.
(Ⅰ)求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B;
(Ⅱ)求矩阵A的特征值;
(Ⅲ)求可逆矩阵P,使得P-1AP为对角矩阵.
[简答题]设A是各行元素之和均为0的三阶矩阵,α,β是线性无关的三维列向量,并满足Aα=3β,Aβ=3α.
(Ⅰ)证明矩阵A和对角矩阵相似;
(Ⅱ)如α=(0,-1,1)T,β=(1,0,-1)T,求矩阵A;
(Ⅲ)用配方法化二次型xTAx为标准形,并写出所用坐标变换.
[填空题]设A为三阶矩阵,E为三阶单位阵,α,β是两个线性无关的三维列向量,且A的行列式|A|=0,Aα=β,Aβ=α,则行列式|A+3E|的值等于
A.0. B.18. C.6. D.24.
[填空题]若α
1
,α
2
,α
3
是三维线性无关的列向量,A是三阶方阵,且Aα
1
=α
1
+α
2
,Aα
2
=α
2
+α
3
,Aα
3
=α
3
+α
1
,则|A|=________.
[简答题]设A是三阶方阵,α
1
,α
2
,α
3
是三维线性无关的列向量组,且Aα
1
=α
2
+α
3
,Aα
2
=α
3
+α
1
,Aα
3
=α
1
+α
2
。求A的全部特征值;
[简答题]设A为三阶方阵,a为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα-2A2α.
证明:(Ⅰ) 矩阵B=(α,Aα,A4α)可逆;
(Ⅱ) BTB是正定矩阵.
[简答题]设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα-2A2α.
证明:(Ⅰ) 矩阵B=(α,Aα,A4α)可逆;
(Ⅱ) BTB是正定矩阵.
[简答题]设A为三阶方阵,α1,α2,α3为三维线性无关列向量组,且有Aα1=α2+α3,Aα2=α3+α1,Aα3=α1+α2.
(Ⅰ)求A的全部特征值;
(Ⅱ)A是否可对角化若可对角化,求可逆矩阵P,使p-1AP=A.