题目详情
当前位置:首页 > 职业培训考试
题目详情:
发布时间:2023-10-23 09:46:04

[简答题]设A和B均为n阶方阵,且满足A2=A,B2=B,(A+B)2=A+B.证明AB=0.

更多"设A和B均为n阶方阵,且满足A2=A,B2=B,(A+B)2=A+B."的相关试题:

[单项选择]设A和B均为n阶方阵,且AB=O,则必有( )。
A. ( A=O或B=O
B. ( A≠O,则B=O
C. (
D. (
[单项选择]设A和B均为n阶方阵,则必有( )。
A. (
B. ( AB=BA
C. (
D. ( (A+-1=A-1+B-1
[单项选择]设A,B均为n阶方阵,且A为可逆矩阵,B为不可逆矩阵,A*,B*分别为A,B的伴随矩阵,则______.
A. A*+B*必为可逆矩阵
B. A*+B*必为不可逆矩阵
C. A*B*必为可逆矩阵
D. A*B*必为不可逆矩阵
[单项选择]若P,Q均为n阶方阵,且P2=P,Q2=Q.又E-(P+Q)非奇异,则
A. r(P)<r(Q).
B. r(P)>r(Q).
C. r(P)=r(Q).
D. r(P),r(Q)无法比较.
[简答题]设A和B均是n阶非零方阵,且满足A2=A,B2=B,AB=BA=0.证明:
0和1必是A和B的特征值;
[简答题]设A和B均是n阶非零方阵,且满足A2=A,B2=B,AB=BA=0.证明:
若α是A的属于特征值1的特征向量,则α必是β的属于特征值0的特征向量.
[简答题]设A,B均为n阶非零矩阵,且满足A2+A=0,B2+B=0,证明:
若AB=BA=0,ξ1,ξ2分别是A,B的对应于特征值λ=-1的特征向量,则ξ1,ξ2线性无关.
[简答题]设A,B均为n阶非零矩阵,且满足A2+A=0,B2+B=0,证明:
-1是A,B的特征值;
[简答题]

已知A是n阶矩阵,且满足方程A2+2A=0,证明A的特征值只能是0或-2.


[简答题]设A是二阶矩阵,α为非零向量,但不是A的特征向量,且满足A2α+Aα-2α=0.
证明A可对角化.
[简答题]设A是二阶矩阵,α为非零向量,但不是A的特征向量,且满足A2α+Aα-2α=0.
证明:
(Ⅰ)α,Aα线性无关;
(Ⅱ)A可对角化.
[简答题]设A是二阶矩阵,α为非零向量,但不是A的特征向量,且满足A2α+Aα-6α=0.
1.证明:α,Aα线性无关;
[简答题]设A是二阶矩阵,α为非零向量,但不是A的特征向量,且满足A2α+Aα-2α=0.
α,Aα线性无关;
[简答题]已知三阶矩阵A与三维向量x,使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax-2A2x:
(Ⅰ)记P=(x,Ax,A2x)求三阶矩阵B,使得A=PBP-1
(Ⅱ)计算行列式|A+E|。
[简答题]已知三阶矩阵A与三维向量x,使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax-2A2x。
计算行列式|A+E|。
[简答题]已知三阶矩阵A与三维向量x,使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax-2A2x。
记P=(x,Ax,A2x)求三阶矩阵B,使得A=PBP-1

我来回答:

购买搜题卡查看答案
[会员特权] 开通VIP, 查看 全部题目答案
[会员特权] 享免全部广告特权
推荐91天
¥36.8
¥80元
31天
¥20.8
¥40元
365天
¥88.8
¥188元
请选择支付方式
  • 微信支付
  • 支付宝支付
点击支付即表示同意并接受了《购买须知》
立即支付 系统将自动为您注册账号
请使用微信扫码支付

订单号:

截图扫码使用小程序[完全免费查看答案]
请不要关闭本页面,支付完成后请点击【支付完成】按钮
恭喜您,购买搜题卡成功
重要提示:请拍照或截图保存账号密码!
我要搜题网官网:https://www.woyaosouti.com
我已记住账号密码