更多"设A是n阶实对称矩阵,证明秩r(A)=n的充分必要条件是存在n阶矩阵B"的相关试题:
[简答题]设A为n×n实对称矩阵,证明:r(A) =n的充分必要条件是存在n×n实矩阵B,使得AB+BTA正定,其中BT为B的转置.
[简答题]设A是n阶实矩阵,则A为正定矩阵的充要条件是存在n阶正定矩阵B,使得A=B2.
[简答题]设A为m阶实对称矩阵且正定,B为m×n阶实矩阵,BT为B的转置矩阵,试证BTAB为正定矩阵的充分必要条件是矩阵B的秩r(B)=n.
[简答题]已知A与B均为n阶正定矩阵,证明AB是正定矩阵的充分必要条件是AB=BA.
[简答题]设A,B都是n阶实对称矩阵,其中A是正定矩阵,证明存在实数t使得tA+B是正定矩阵.
[简答题]设A,B都是n阶正定矩阵,P为n×m矩阵,证明:PT(A+B)P正定的充分必要条件是r(P)=m.
[简答题]设A是n阶矩阵,证明:
r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβT;
[简答题]设A是n阶矩阵,证明:
1.r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβT;
[简答题]设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
[简答题]若任一n维非零列向量都是n阶矩阵A的特征向量,证明A是数量矩阵(即A=kE,层是n阶单位矩阵).
[简答题]若任一n维非零列向量都是n阶矩阵A的特征向量,证明A是数量矩阵(即A=kE,E是n阶单位矩阵)。