更多"设A为3阶矩阵,α1,α2,α3是3维线性无关的列向量,其中α1是齐次"的相关试题:
[简答题]设A为3阶矩阵,α1,α2,α3是3维线性无关的列向量,其中α1是齐次方程组Ax=0的解,又知Aα2=α2+2α2,Aα3=α1-3α2+2α3.
(Ⅰ) 求矩阵A的特征值与特征向量;
(Ⅱ) 判断A是否和对角矩阵相似并说明理由;
(Ⅲ) 求秩r(A+E).
[填空题]谁A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解,则丨A丨=()
[简答题]已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2-2α3,Aα2=-α2,
Aα3=8α1+6α2-5α3.
(Ⅰ)写出与A相似的矩阵B;
(Ⅱ)求A的特征值和特征向量;
(Ⅲ)求秩r(A+E).
[填空题]设A是3阶矩阵,α1,α2,α3是3维线性无关的列向量,且
Aα1=α1,Aα2=-α3,Aα3=α2+2α3
则矩阵A的三个特征值是______.
[填空题]设A为3阶矩阵,α1,α2,α3为3维线性无关的列向量,且Aα1=α3,Aα2=α2,Aα3=α1,则秩r(A-E)=______。
[简答题]设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn。
证明方程组AX=b有无穷多个解;
[简答题]设n阶矩阵A=(α1,α2,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+α2+…+(n-1)αn-1=0,b=α1+α2+…+αn。
(Ⅰ)证明方程组AX=b有无穷多个解。
(Ⅱ)求方程组AX=b的通解。
[简答题]若n阶矩阵A=(α1,α2,…,αn-1,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,β=α1+α2+…+αn,证明:
方程组AX=β必有无穷多解;
[简答题]设A是各行元素之和均为0的三阶矩阵,α,β是线性无关的三维列向量,并满足Aα=3β,Aβ=3α.
(Ⅰ)证明矩阵A和对角矩阵相似;
(Ⅱ)如α=(0,-1,1)T,β=(1,0,-1)T,求矩阵A;
(Ⅲ)用配方法化二次型xTAx为标准形,并写出所用坐标变换.
[简答题]已知三阶矩阵B≠0,且B的每一个列向量都是以下方程组的解
求λ的值;
[填空题]A是三阶矩阵,ξ,α,β是三个三维线性无关的列向量,其中Ax=0有解ξ,Ax=β有解α,Ax=α有解β,则A~______.
[简答题]已知三阶矩阵B≠0,且B的每一个列向量都是以下方程组的解
证明:|B|=0.
[单项选择]已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα-2A2α,那么矩阵A属于特征值λ=-3的特征向量是
A. α.
B. Aα+2α.
C. A2α-Aα.
D. A2α+2Aα-3α.
[填空题]设A为三阶矩阵,E为三阶单位阵,α,β是两个线性无关的三维列向量,且A的行列式|A|=0,Aα=β,Aβ=α,则行列式|A+3E|的值等于
A.0. B.18. C.6. D.24.
[填空题]设A是三阶矩阵,α1,α2,α3是三维线性无关列向量,且满足Aα1=α1+2α2+α3,A(α1+α2)=2α1+α2+α3,A(α1+α2+α3)=α1+α2+2α3,则|A|=______.
[简答题]设A为三阶矩阵,α1,α2,α3为三维线性无关列向量组,且有Aα1=α2+α3,Aα2=α3+α1,Aα3=α1+α2.
A是否可对角化