参考答案:B
设长方形的长为a,宽为b,则这个问题就是求已知a+b=8、且a≠b时,axb的最大值。为了便于观察,我们分析如下:
8 = 1 + 7→1X7=7;8 = 2 + 6→2X6 = 12;
8 = 3 + 5→3 X5=15;8 = 4 + 4→4 X 4 = 16;
8 = 5 + 3→5X3=15;8 = 6 + 2 → 6X2 = 12;
8 = 7 + 1→ 7X1=7。
我们发现当a从小到大取值,而b从大到小取值时,a与b的积呈现这样一个变化趋势:就是先由小到大,再由大到小,中间是最大的,也就是a与b取的数越接近,它们的乘积就越大。当a = b时,aXb的值最大。由此,得出一条规律:
如果a+b—定,只有当a =b时,a与b的乘积才最大。
由上面的讨论可知,在a +b=8,且a≠b中,当a=3,b= 5时,aXb的最大值是:3X5 = 15。 所以,所围成的最大的一个长方形的面积是15平方厘米。故本题正确答案为B。
我来回答:
最新试题