更多"向量组a1=(1,-1,2,4)T,a2=(0,3,1,2)T,a3="的相关试题:
[简答题]确定常数a,使向量组a1=(1,1,a)T,a2=(1,a,1)T,a3=(a,1,1)T可由向量组β1===(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组a1,a2,a3线性表示.
[单项选择]向量组a1,a2,…,as(s≥2)线性无关,设β1+a1+a2,β2=a2+a3,…,βs-1,=as-1+as,βs=as+a1,则β1,β2,…,βs()。
A. 线性相关
B. 线性无关
C. s为奇数时线性相关,s为偶数时线性无关
D. s为奇数时线性无关,s为偶数时线性相关
[单项选择]已知3阶矩阵A与3维列向量α,若向量组α,Aα,A2α线性无关且A3α=3Aα-2A2α,则矩阵A属于特征值λ=1的特征向量是______
A. A2α+2Aα-3α
B. A2α+3Aα
C. A2α-Aα
D. α
[简答题]设a1,a2,β1,β2为三维列向量组且a1,a2与β1,β2都线性无关.
证明:至少存在一个非零向量可同时由a1,a2和β1,β2线性表示;
[简答题]设a1,a2,β1,β2为三维列向量组且a1,a2与β1,β2都线性无关.
设a1=[*],a2=[*],β1=[*],β2=[*],求出可由两组向量同时线性表示的向量.
[简答题]设A为三阶方阵,a为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα-2A2α.
证明:(Ⅰ) 矩阵B=(α,Aα,A4α)可逆;
(Ⅱ) BTB是正定矩阵.
[单项选择]向量组a1,a2,…,as(s≥2)线性无关,设β1+a1+a2,β2=a2+a3,…,βs-1,=as-1+as,βs=as+a1,则β1,β2,…,βs()。
A. 线性相关
B. 线性无关
C. s为奇数时线性相关,s为偶数时线性无关
D. s为奇数时线性无关,s为偶数时线性相关
[简答题]
已知3阶矩阵A与三维向量x,使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax-2A2x.
(1)记P=(x,Ax,A2x),求3阶矩阵B,使A=PBP-1;(2)计算行列式|A+E|.
[简答题]设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα-2A2α.
证明:(Ⅰ)矩阵B=(α,Aα,A4α)可逆;
(Ⅱ) BTB是正定矩阵,
[简答题]已知3阶矩阵A与3维向量x,使得向量组x,Ax,A
2
x线性无关.且满足A
3
x=3Ax一2A
2
x.计算行列式∣A+E∣.
[单项选择]已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα-2A2α,那么矩阵A属于特征值λ=-3的特征向量是
A. α.
B. Aα+2α.
C. A2α-Aα.
D. A2α+2Aα-3α.
[简答题]已知三阶矩阵A与三维向量x,使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax-2A2x:
(Ⅰ)记P=(x,Ax,A2x)求三阶矩阵B,使得A=PBP-1;
(Ⅱ)计算行列式|A+E|。
[简答题]已知三阶矩阵A与三维向量x,使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax-2A2x。
计算行列式|A+E|。
[简答题]已知三阶矩阵A与三维向量x,使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax-2A2x。
记P=(x,Ax,A2x)求三阶矩阵B,使得A=PBP-1;
[单项选择]已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A
2
α线性无关,而A
3
α=3Aα一2A
2
α,那么矩阵A属于特征值λ=一3的特征向量是( )
A. α。
B. Aα+2α。
C. A
2
α一Aα。
D. A
2
α+2Aα一3α。
[单项选择]n维向量组a1,a2,…,as线性无关的充分条件是()。
A. a1,a2,…,as均不是零向量
B. a1,a2,…,as中任意两个向量的分量不成比例
C. a1,a2,…,as的个数s≤n
D. 某向量β可以由a1,a2,…,as线性表示,且表示式唯一
[单项选择]设向量组Ⅰ:a1,a2,…,ar,可由向量组Ⅱ:β1,β2,…,β5线性表示,下列命题正确的是______
A. 若向量组Ⅰ线性无关,则r≤s.
B. 若向量组Ⅰ线性相关,则r>s.
C. 若向量组Ⅱ线性无关,则r≤s.
D. 若向量组Ⅱ线性相关,则r>s.
[单项选择]设向量组(Ⅰ)是向量组(Ⅱ)的线性无关的部分向量组,则
(A) 向量组(Ⅰ)是向量组(Ⅱ)的极大线性无关组.
(B) 向量组(Ⅰ)与向量组(Ⅱ)的秩相等.
(C) 当向量组(Ⅰ)可由向量组(Ⅱ)线性表示时,向量组(Ⅰ)与向量组(Ⅱ)等价.
(D) 当向量组(Ⅱ)可由向量组(Ⅰ)线性表示时,向量组(Ⅰ)与向量组(Ⅱ)等价.